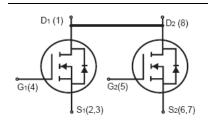


Common Drain Dual N-channel Enhancement Mode MOSFET

GENERAL DESCRIPTION

The GP9926A is Common Drain Dual N-channel enhancement mode MOSFET designed by advanced trench process technology provides the designer with the best combination of fast switching response, low on-resistance, and low cost.

The TSSOP8 package is space saving surface mount for all commercial and industrial applications. It is suitable for low voltage, low loss and fast switching applications such as Li-ion battery pack applications.


FEATURES

- 5.2A, 20V, RDS(ON) = $45m\Omega$ @ VGS = 2.5V
- 6.0A, 20V, RDS(ON) = $30m\Omega$ @ VGS = 4.5V
- High performance trench technology for extremely low RDS(ON)
- Low gate charge
- Fast switching speed
- High Power and Current handling capability

APPLICATIONS

■ Li-ion Battery Pack

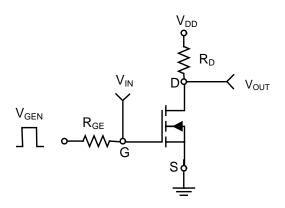
PACKAGE PIN OUT

MARKING INFORMATION

Part Number	Marking	Package
GP9926A	xxww	TSSOP-8

xx: Year ww: Production date code

ABSOLUTE MAXIMUM RATINGS (TA = 25°C unless otherwise noted)							
Parameter	Symbol	Limit	Unit				
Drain-Source Voltage	VDS	20	V				
Gate-Source Voltage	Vgs	±12	V				
Continuous Drain Current ID@ TA = 25°C	ΙD	6	Α				
Pulsed Drain Current ¹ IDM	Ідм	30	Α				
Total Power Dissipation PD@ TA = 25°C	PD	2.0	W				
Storage Temperature Range	Тѕтс	-55 to +150	°C				
Operation Junction Temperature Range	TJ	-55 to +150	°C				
THERMAL CHARACTERISTICS							
Thermal Resistance, Junction-to-Ambient	Rthj-amb	62.5	°C/W				
Thermal Resistance, Junction-to-Case	Rthj-c	30	°C/W				


<u>www.grnpowers.com</u> 1 Revision 1.01 April 26, 2006

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)						
Parameter	Symbol	Test Conditions	GP9926A			Linita
			Min	Тур	Max	Units
Drain-Source Breakdown Voltage	BVDSS	Vgs=0V, ID=500μA	20			V
Static Drain-source On=Resistance	RDS(ON)	Vgs=2.5V, ID=5.2A		24	45	mΩ
		Vgs=4.5V, ID=6.0A		17	30	mΩ
Gate Threshold Voltage	VGS(th)	VDS=VGS, ID=500μA	0.6	0.8		V
Forward Transconductance	G fs	Vps=10V, lp=6.0A	7	13		S
Drain-Source Leakage Current (Tj=25°C)	IDSS	Vps=20V, Vgs =0V			1	μА
Gate-Source Leakage	Igss	Vgs=±20V, Vds=0V			±100	nA
Total Gate Charge ²	Qg	ID=6.0A		7.6		nC
Gate-Source Charge	Qgs	V _{DS} =10V		1.2		nC
Gate-Drain ("Miller") Charge	Qgd	Vgs=4.5V		2.4		nC
Turn-On Delay Time ²	t d(on)	Vps=10V		10		ns
Turn-On Rise Time	tr	ID=1A		12		ns
Turn-Off Delay Time	td(off)	Rg=6Ω, Vgs=4.5V		18		ns
Turn-Off Fall Time	tf	R _D =10Ω		8		ns
Input Capacitance	Ciss	Vgs=0V		860		pF
Output Capacitance	Coss	Vps=8V		160		pF
Reverse Transfer Capacitance	Crss	f=1.0MHz		110		pF

SOURCE-DRAIN DIODE						
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Continuous Source Current (Body Diode)	Is	VD=VG=0V, VS=1.2V			1.7	Α
Pulsed Source Current (Body Diode)	Isм				16	Α
Forward On Voltage ²	VsD	Tj=25°C, Is=1.7A, Vgs=0V			1.1	V

Notes:

Pulse width limited by safe operating area.
Pulse width ≤300μs, duty cycle ≤2%.

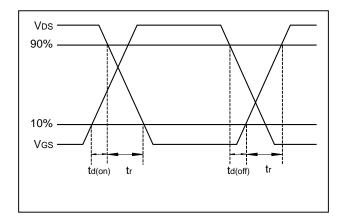
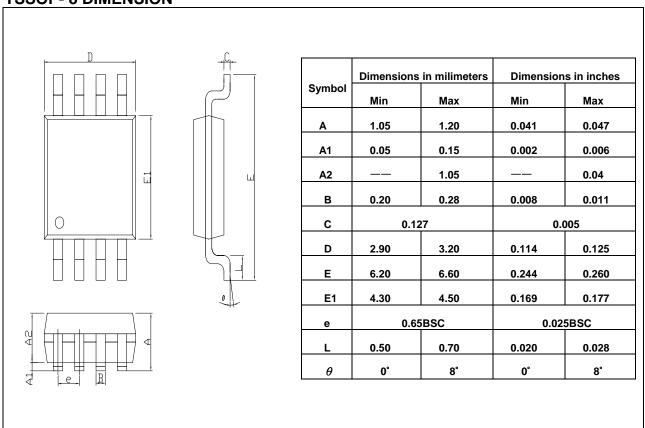



Fig 1. Switching Time Circuit

Fig 2. Switching Time Waveform

Package Information

TSSOP-8 DIMENSION

Green Power Semiconductor Inc. (GPS) reserves the right to make changes to its products specification without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is specification.

Some applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. GPS integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of GPS products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

GPS assumes no liability to customer product design or application support. GPS warrants the performance of its products to the specifications applicable at the time of sale.