Green Power Semiconductor, Inc.

GP1112 1A Low Dropout Positive Regulator

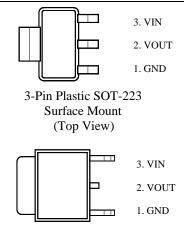
DESCRIPTION

The GP1112 is a fixed 1.2V positive low dropout voltage regulator designed to provide 1A output current for applications requiring high efficiency. The internal circuitry is designed to operate down to 1V input to output differential.

The GP1112 built-in current limiting and thermal protection function made chip easy to use. The on chip trimming adjusts the output voltage accuracy to within +/-1%.

FEATURES

- IA Output current
- Fixed 1.2V (typ.) output
- Maximum 15V Input Voltage
- Thermal protection built-in
- Current Limit protection built-in
- Fast transient response
- Available in SOT-223 and TO-252 packages

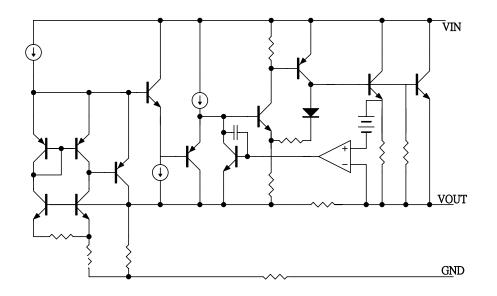

APPLICATIONS

- High Efficiency Linear Regulators
- Battery Powered Instrumentation
- Post Regulator for Switching DC/DC Converter
- DVD Player
- Active SCSI terminators

Voltage Options

GP1112 – 1.2V Fixed

PACKAGE PIN OUT



3-Pin Plastic TO-252 Surface Mount (Top View)

ORDER INFORMATION							
	ет	SOT223	SM	TO-252			
T _A (°C)	51	3-pin	SIVI	3-pin			
	GP1112STF (Lead Free)		GP1112SMF (Lead Free)				
GP1112	Note: Surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e. GP1112SMT) in order information. The letter "F" is for Lead Free process .						

www.grnpowers.com

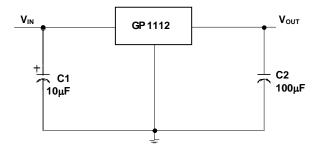
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Note a)				
Input Voltage	15V			
Operating Junction Temperature Range, T _J	0 °C to 150 °C			
Storage Temperature Range	-65 °C to 150 °C			
Lead Temperature (soldiering, 10 seconds)	260 °C			
Note a: Exceeding these ratings could cause damage to the device. All voltages are with respect to				
Ground. Currents are positive into, negative out of the specified terminal.				

POWER DISSIPATION TABLE							
Package	θ_{JA}	Derating factor (mW/°C)	T _A ≤ 25 °C	T _A =70 °C	T _A = 85 °C		
	($^{\circ}C$ /W)	$T_A \ge 25^{\circ}C$	Power rating	Power rating (mW)	Power rating (mW)		
ST	136	7.35	919	588	478		
STF	136	7.35	919	588	478		
SM	80	12.5	1562	1000	812		
SMF	80	12.5	1562	1000	812		

a. $\theta_{JA:}$ Thermal Resistance-Junction to Ambient, D_F : Derating factor, Po: Power consumption. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$, Po = $D_F \times (T_J - T_A)$ The θ_{JA} numbers are guidelines for the thermal performance of the device/PC-board system.

All of the above under the condition of no ambient airflow.

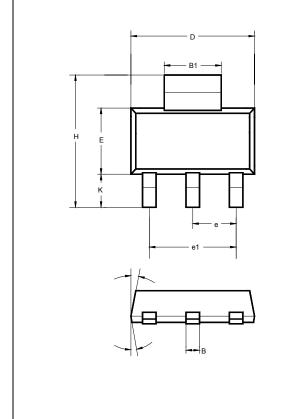

b. $\theta_{JT:}$ Thermal Resistance-Junction to Ambient, T_C: case (Tab) temperature, T_J = T_C + (P_D × θ_{JT}) For ST package, θ_{JT} = 15.0 °C /W. For SM package, θ_{JT} = 7.0 °C /W.

	RECON	MENDED	OPERATI	IG CONDI	TION	IS		r	
Paramete	Symbol	Recommended Op			erating		Units		
			Min.	٦	Гур.	Max.			
Input Voltage			V _{IN}	2.7			12		V
Load Current (with adequate	e heat sir	ıking)	l _o	5					mA
Input Capacitor (V _{IN} to GND)			1.0					μF
Output Capacitor with ESR	of 10Ω m	ax.,		4.7					μF
Junction temperature			TJ				125		°C
	EL	ECTRICAL		TERISTIC	S				
Jnless otherwise specified, V	V _{IN} = V _{OUT}	+2V, I _O =10	DmA, and T	_J = 25 °C.					
Parameter	Symbol	-	Test Osselitiers		GP1112		Units		
Parameter	Symbol		Test Conditions		Min	Тур	Max	Units	
Output Voltage	Vo	lo = 10mA, Vin = 3.2V			1.188	1.200	1.212	V	
		Io = 10mA to 1A, Vin = 2.7V to 12V			1.188	1.200	1.212	v	
Line Regulation	ΔV_{OI}	I_O = 10mA, 2.7V $\leq V_{IN} \leq 12V$					2.5	mV	
Load Regulation	ΔV_{OL}	$10mA \le I_0 \le 1A, \ V_{IN} = 3.2V$					5	mV	
	UL	Tj= Tj=0°C to +125°C,					5		
Dropout Voltage	۸V	$I_0 = 1A$ $I_0 = 1A, (Tj=0^{\circ}C \text{ to } +125^{\circ}C)$				1.0	1.30	v	
		l _o = 1A, (T	j=0°C to +	125℃)			1.2	1.48	-
Minimum Load Current (Note a)		$V_{IN} \leq 12V$				5	mA		
Quiescent Current	Ι _Q	V _{IN} – Vout = 5V			5	10	mA		
Current Limit	I _{CL}	$V_{IN} - V_{OUT} = 5V$			1			А	
Adjust Pin Current		$I_0 = 10 \text{mA}, V_{\text{IN}} - V_{\text{OUT}} = 2 \text{V}$			50	120	μA		
Thermal Regulation(Note b)		$T_A = 25^{\circ}C$, 30 ms pulse		se			0.5		%/W
Ripple rejection(Note b)	R _R	f _o = 120Hz V _{IN} – V _{OUT}		-		60	70		dB

Note a: For the adjustable device, the minimum load current is the minimum current required to maintain regulation. Normally the current in the resistor divider used to set the output voltage is selected to meet the minimum load current requirement.

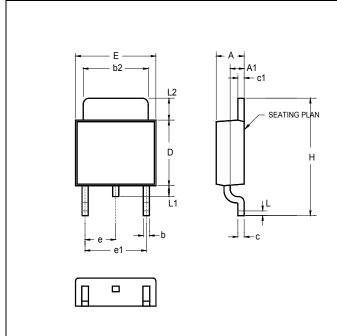
Note b: These parameters, although guaranteed, are not tested in production.

APPLICATION CIRCUIT



Application Note:										
Maximum Power Dissipation Cal	culation	:								
$P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A(MAX)}}{\theta_{IA}}$										
T _J (°C): Maximum recommen	ided junc	tion temperat	ure							
$T_A(^{\circ}C)$: Ambient temperature		•		<i>.</i>						
θ _{JA} ([°] C/W): Junction-to-junction t dissipating materials.		ure thermal re	sistance c	of the packag	je, and othe	r heat				
The maximum power dissipat	ion of a	-	-	egulator :						
$P_{D(MAX)} = [(V_{IN(MAX)} - V_{OUT(NOM)})] \times$										
V _{OUT(NOM)} = the I _{OUT(NOM)} = the										
$I_Q = $ the quiesce	ent curre	nt the regulate		es at I _{OUT(MAX}	X)					
V _{IN(MAX)} = the n θ _{IA} = (150 °C –		input voltage								
	10 0									
Thermal consideration:										
In the application when power cons TO-252 package), at $T_A=70$ °C). A the chip junction temperature below	Additiona									
The chip junction temperature is ca	alculate b	y the formula	: T _J = P _D	(θ _{JT} + θ _{CS} + θ) + T _A					
P _{D.} :Dissipated power.		-		••••						
$\theta_{JT.}$:Thermal resistance from the θ_{CS} :Thermal resistance throug						it is mounted.				
(typically, $\theta_{CS} < 1.0^{\circ}$ C/W)					internet of th					
θ_{SA} : Thermal resistance from t	the mour	iting surface t	o ambient	(thermal res	sistance of th	ne neat sink).				
PC Board copper can be used as I	heat sink	, the table be	low can b	e referenced	to determin	ne the appropriate				
size of copper area required. PCB θ _{SA} (°C /W) 59	45	38	33	27	24	21				
0,(()	1000	1500	2000	3000	4000	5000				
Recommended drawing of PCB are	ea used a	as a neat sink								
			thro	ugh hole vias						
(Top View)	(Top View) (Bottom View)									

www.grnpowers.com


GP1112

3-Pin Surface Mount SOT-223 (ST)

	r					
	MILLIMETERS					
	MIN TYP MAX					
А	1.50	1.65	1.80			
A1	0.02	0.05	0.08			
В	0.60	0.70	0.80			
B1	2.90	-	3.15			
с	0.28	0.30	0.32			
D	6.30	6.50	6.70			
Е	3.30	3.50	3.70			
е	2.3 BSC					
e1		4.6 BSC				
н	6.70	7.00	7.30			
L	0.91	1.00	1.10			
к	1.50	1.75	2.00			
α	0°	5°	10°			
β		3°				

3-Pin Surface Mount TO-252 (SM)

	I	NCHES	6	MILLIMETERS			
	MIN	TYP	MAX	MIN	TYP	MAX	
А	0.086	-	0.094	2.18	-	2.39	
A1	0.040	-	0.050	1.02	I	1.27	
b	-	0.024	-	I	0.61	-	
b2	0.205	-	0.215	5.21	1	5.46	
С	0.018	-	0.023	0.46	I	0.58	
c1	0.018	-	0.023	0.46	I	0.58	
D	0.210	-	0.220	5.33	-	5.59	
Е	0.250	-	0.265	6.35	-	6.73	
е	0.090 BSC			2.29 BSC			
e1	0.	180 BS	SC	4.58 BSC			
Н	0.370	-	0.410	9.40	-	10.41	
L	0.020	-	-	0.51	_	-	
L1	0.025	-	0.040	0.64	-	1.02	
L2	0.060	-	0.080	1.52	-	2.03	

IMPORTANT NOTICE

Green Power Semiconductor Inc. (GPS) reserves the right to make changes to its products specification without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is specification.

Some applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. GPS integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of GPS products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

GPS assumes no liability to customer product design or application support. GPS warrants the performance of its products to the specifications applicable at the time of sale.